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Introduction 

There have been a number of previous demonstrations of the 
use of the Maximum Entropy principle (MaxEnt) in the 
deconvolution of experimental spectra [l-3]. However, as 
far as we know, there have been no previous discussions of 
the problems that arise in applying MaxEnt methods in 
practice. When deconvoluting a known, model spectrum it 
is straightforward to show, by means of an R-factor, that 
You have reached good agreement with the intrinsic 
spectrum. When deconvoluting real data the 
experimentalist derives a result, but then does not know 
how much credence to place on the result. The question 
‘what are the error bars’ is not appropriate since the 
errors on a deconvoluted spectrum are not uncorrelated, 
but the spirit of the question is valid. This paper 
addresses itself to that problem. 

Our approach is purely pragmatic. In the first section we 
show the results of deconvoluting a Gaussian line shape 
from three different intrinsic line shapes. This 
demonstrates not only the quality of the deconvoluted 
spectrum that may be obtained, but also how the final 
R-factor varies as a function of the Gaussian width. 

In the second section the procedure is repeated for 
doublet intrinsic peaks, and the criteria for separation 
established. 

In the third section we demonstrate that line shapes other 
than Gaussian may be removed from broadened spectra and 
examine the effects of uncertainties in our knowledge of 
the broadening function. 
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Finally we demonstrate the use of MaxEnt on a real problem 
where the technique has been used to substantially improve 
the resolution of an inelastic spectrometer. 

THE DECONVOLUTION OF GAUSSIAN LINE SBAPES 

In all the computer experiments described below the 
following procedure and definitions were used. 

An intrinsic spectrum is defined, corresponding to the 
result that would be measured by an instrument with 
perfect resolution and no statistical error. This 
intrinsic spectrum is broadened by the resolution function 
and noise (with Poisson statistics) is added to produce 
the observed spectrum. The METRIC [4] MaxEnt method is 
then used to deconvolute the observed spectrum using the 
broadening function to yield the deconvoluted spectrum. 
Clearly the broadening function should be identical to the 
resolution function, if the deconvoluted spectrum is to 
agree with the intrinsic spectrum. 

The first computer deconvolutions were conducted to enable 
users of the method on real data to estimate the likely 
difference between the deconvoluted spectrum and the 
(unknown) intrinsic spectrum. In these experiments three 
different intrinsic spectra were used : 

GAUSSIAN Y = (l/d2Jl) e-x2/2o2 

CAUCHY Y = (1 t X2/h2)/Jlh 

GAPW4 Y = u3x2cu/2 t b 

+ b 

t b 

Each were calculated over a time base from 0 to 1600 ps 
using channels of width 8 us. 

The tests were carried out with varying values for the 
background level (b) and different values for (I , the 
standard deviation of the Gaussian resolution fu6ction 
which was used to broaden the intrinsic spectra. 

Figures 1 , 2 and 3 (A-C) show sample results for each of 
the three types of intrinsic spectra with the following 
parameters 
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Figure 1 
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Figure 2 
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Figure 3 
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Intrinsic 
FWHM (us) 
intrinsic 

% 
(us) 

Background 

Figure 1 Gaussian 100 65 0.4 

2 Cauchy 100 60 0.2 

3 Gamma 140 70 0.4 

The background is expressed as an area fraction of the 
total area. 

In these figures A is the observed spectrum, B is the 
deconvoluted spectrum and C the intrinsic spectrum. 

Defining the R-factor as : 

R2 I T: (di - ii) 2 
Z ii2 

where di is the deconvoluted spectrum 

li is the intrinsic spectrum 

We may plot R as a function of or/FWHMHObS, assuming 

or'FWHMHobs 
to be a measure of the 'difficulty' of the 

deconvolution. This is done in Figures 4, 5 and 6. It 

will be seen from these plots that : 

(4 

(b) 

(cl 

The results are largely independent of the background 
level. 

There is a general similarity between the R-factors 
when deconvoluting all peak shapes - especially those 
of Cauchy and Gamma distributions. 

If the deconvolution problem lies in the range 0 < 

or'FWHMHobs < 0.2 the final R -factor will be < 5%. 
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, 

Figure 4 

Figure 5 

Figure 6 
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These results are useful in giving us confidence when 
deconvoluting peaks in this region. It also demonstrates 
that the method becomes unstable for u /FWHMH ratios 
greater than 0.30 when the resoluEion fu &ion "$ is 
Gaussian. 

2. DOUBLET INTRINSICPEAKSJIAPES 

The second series of tests used two peaks with a 
background count at a constant 20% of the total count, 
with ts 
the peal& 

in the range lo-80 us, and the separation between 
in the range 80-300 us. 

Figures 7, 8 and 9 (A-C) show sample results for the 
following parameters : 

Fiaure i 
FWHMH I 

(us)l 
% 
(us) 

Separation 
(us) 

7 Gaussian 100 60 132 

8 Cauchy 100 60 165 

9 Gamma 140 60 148 

The R-factor results for the double peak deconvolutions 
are shown in Figures 10, 11 and 12. This shows the 
R-factor versus the peak separation for various values of 
0. 
Fggure 

The results to the left of the vertical line on each 
are those for which the two peaks are not resolved. 

Again it becomes clear that there is a broad agreement of 
the region where separation will occur and the R-factors 
exhibit-predictable,- systematic variations 
useful in indicating the likely results 
when deconvoluting true experimental data. 

3. NONGAUSSIANRJEOLU!PIoWEWNC!CIoNS 

which should be 
to be obtained 

In all the preceding experiments the resolution function 
has been Gaussian. 

Figures 13-17 (A-D) show sample plots of results obtained 
using single and double peak intrinsic Gaussian 
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Figure 7 
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Figure 8 
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Figure 9 
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distributions, and Gamma or Cauchy resolution functions. 
In Figures 13-17, A is the observed data, B is the 
resulting deconvolution, C is the resolution function and 
D is the intrinsic spectrum. 

Fig. No. of s$p. Broadeninq 
Peaks &!L 

FwHMi FWHMr Function 

13 1 

14 1 

15 1 

16 2 

17 2 

6.0 

10.0 

3.0 17.0 Gamma 

6.0 11.0 Gamma 

5.0 14.0 Cauchy 

3.0 11.0 Gamma 

8.0 11.0 Gamma 

In all five cases, the total count was 60,000 (for the 
intrinsic spectra) . For the single peak plots, a 
background count of 33% of the total count was included. 
The double peak plots had no background. 

The results from the double peak deconvolution (Figures 
16, 17) are quite remarkable, showing the separation of 
identifiable peaks even when the width of the resolution 
function is comparable with the peak separation. This 
success may be due to the absence of background. 

4. EFFEX!l!S OF UNCERTAINTY IN THE lwMLEDGEoFar 

When experimental spectra have to be deconvoluted (as 
opposed to computer simulated spectra) there may be some 
uncertainty in the knowledge of 0 , since this cannot in 
many cases be directly measured. We therefore 
investigated the effect of this uncertainty by 
deconvolut ing the observed spectra with a range of 
different broadening functions. 

The results of these trials are given in Tables 1, 2 and 

3. It will be seen that, as expected, an underestimate of 

the broadening function causes no serious problem and a 

solution (1 2 I 1) is found. If the broadening function is 

overestimated by more than - 10% no solution is found. 
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Figure 13 
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Figure 15 
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Figure 16 
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Figure 17 
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TABLE 1 

Intrinsic : Gaussian 

FWHMHi : 9.4 

Resolution : Gamma 

FWHMH, : 11.0 

Background : 0.0 

Broadening 
FWHMH 1c2 Iterations 

15.0 708 600 

14.0 402 600 

13.0 230 700 

12.0 <1 900 

11.0* < 1 500 

10.0 <l 500 

9.0 <l 400 

Solution 
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Intrinsic 

FWHMHi 

Resolution 

FW% 
Background 

Broadeninq 
FWHMH x2 

. . Gaussian 

. . 5.9 

: Gamma 
. . 11.0 

: 0.33 

Iterations Solution 

15.0 a.4 20,000 

14.0 4.3 20,000 

13.0 <l 1,800 

12.0 <l 1,000 

11.0" <l 700 

10.0 <1 600 

9.0 <1 400 

7 
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TABLE 3 

Intrinsic 

FWHMHi 

Separation 

Resolution 

FW% 
Background 

Broadening 
FWHMH iL2 

14.0 5.2 20,000' 

13.0 1.6 20,000 

12.0 <l 1,700 

11.0 <l 1,300 

10.0 <l 1,000 

9.0 <l 800 

9.0 <l 800 

: Gaussian Doublet 

: 7.1 

: 10.0 
. . huma 

: 11.0 

: 0.0 

Iterations Solution 
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The x 2 rapidly diverges as the broadening FWHMH is 

increased beyond the ‘true’ value. In fact it is possible 

that, in the absence of any other information, this 

behaviour could be used to try to judge the width of the 

broadening function. 

5. TEST OH EXP ERR4ENTA.L DA!l!A 

So far all the results discussed in this paper have been 
for computer simulated spectra. As a test of the method 
the algorithm was applied to data recorded on the IRIS 
spectrometer at the ISIS facility. The raw data is shown 
in Figure 18. and was obtained from a sample of 4-methyl 
pyridine . 
rotator the 

If the CH3 group in this molecule were a free 
spectrum would consist of a single line, 

broadened by the instrumental resolution. 

In fact three peaks are easily seen and the deconvolution 
of the observed data (Figure 19) by a Gaussian broadening 
function (0 

8 
= 0.0064 meV) suggests that a fourth peak is 

in fact pre ent as a shoulder to the central peak. This 
is agreement with the presence of four molecules in the 
unit cell. 

6. CONCLUSIOW 

In this paper we have explored some of the issues that 
will have to be resolved if the MaxEnt method is to become 
a standard data analysis tool. The central problem hinges 
on the confidence levels to be assigned to the result, 
either when the broadening function is known precisely or 
when there may be some systematic error in its assumed 
value. 

Since these confidence limits cannot be determined 
analytically the only method at present available is the 
empirical one. If one is deconvoluting a particular 
experimental spectrum the result can be used as the 
starting point of a series of computer experiments to 
determine the stability of the solution to a number of 
random or systematic errors. 
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