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Introduction

There have been a number of previous demonstrations of the
use of the Maximum Entropy principle (MaxEnt) in the
deconvolution of experimental spectra [1-3]. However, as
far as we know, there have been no previous discussions of
the problems that arise in applying MaxEnt methods in
practice. When deconvoluting a known, model spectrum it
is straightforward to show, by means of an R-factor, that
you have reached good agreement with the intrinsic
spectrum. When deconvoluting real data the
experimentalist derives a result, but then does not know
‘how much credence to place on the result. The question
"what are the error bars’ is not appropriate since the
errors on a deconvoluted spectrum are not uncorrelated,
but the spirit of the question is valid. This paper
addresses itself to that problem.

Our approach is purely pragmatic. In the first section we
show the results of deconvoluting a Gaussian 1line shape
from three different intrinsic 1line shapes. This
demonstrates not only the guality of the deconvoluted
spectrum that may be obtained, but also how the final
R-factor varies as a function of the Gaussian width.

In the second section the procedure is repeated for
doublet intrinsic peaks, and the criteria for separation
established.

In the third section we demonstrate that line shapes other
than Gaussian may be removed from broadened spectra and
examine the effects of uncertainties in our knowledge of
the broadening function.
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Finally we demonstrate the use of MaxEnt on a real problem
where the technique has been used to substantially improve
the resolution of an inelastic spectrometer.

THE DECONVOLUTION OF GAUSSIAN LINE SHAPES

In all the computer experiments described below the
following procedure and definitions were used.

An intrinsic spectrum is defined, corresponding to the
result that would be measured by an instrument with
perfect resolution and no statistical error. This
intrinsic spectrum is broadened by the resolution function
and noise (with Poisson statistics) is added to produce
the observed spectrum. The METRIC [4] MaxEnt method is
then used to deconvolute the observed spectrum using the
broadening function to yield the deconvoluted spectrum.
Clearly the broadening function should be identical to the
resolution function, if the deconvoluted spectrum is to
agree with the intrinsic spectrum.

The first computer deconvolutions were conducted to enable
users of the method on real data to estimate the likely
difference between the deconvoluted spectrum and the
(unknown) intrinsic spectrum. In these experiments three
different intrinsic spectra were used :

-x2/2 2
GAUSSIAN vy (1/aV2m) e ° 4+ b

CAUCHY v (1 + <22 /m + b

GAMMA y = u3x2e-ux/2 + b

Each were calculated over a time base from 0 to 1600 ps
using channels of width 8 ps.

The tests were carried out with varying values for the
background 1level (b) and different values for o_, the
standard deviation of the Gaussian resolution fufiction
which was used to broaden the intrinsic spectra.

Figures 1 , 2 and 3 (A-C) show sample results for each of
the three types of intrinsic spectra with the following
parameters
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Intrinsic FWHM_(ps) Sr Background

intrinsic (fis)
Figure 1 Gaussian 100 65 0.4
2 Cauchy 100 60 0.2
3 Gamma 140 70 0.4

The background is expressed as an area fraction of the
total area.

In these figures A 1is the observed spectrum, B is the
deconvoluted spectrum and C the intrinsic spectrum.

Defining the R-factor as :

z (di - 1i.)

where di is the deconvoluted spectrum

ii is the intrinsic spectrum

We may plot R as a function of cr/FWHMﬂobS, assuming
or/FWHMHobS

deconvolution. This is done in Figures 4, 5 and 6. It

to be a measure of the ’difficulty’ of the

will be seen from these plots that :

(a) The results are largely independent of the background
level,

(b) There is a general similarity between the R-factors
when deconvoluting all peak shapes - especially those
of Cauchy and Gamma distributions.,

(c) If the deconvolution problem 1lies in the range 0 <
or/FWHMHobs < 0.2 the final R -factor will be < 5%,
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These results are useful in giving us confidence when
deconvoluting peaks in this region. It also demonstrates
that the method becomes unstable for o /FWHMH ratios
greater than 0.30 when the resolufion fﬁggtion is

Gaussian.

2. DOUBLET INTRINSIC PEAK SHAPES

The second series of tests used two peaks with a
background count at a constant 20% of the total count,
with o_ in the range 10-80 ps, and the separation between
the peafs in the range 80-300 ps.

Figures 7, 8 and 9 (A-C) show sample results for the
following parameters :

, . FWHMH, o Separation
F e —_— -

7 Gaussian 100 60 132

8 Cauchy 100 60 165

9 Gamma 140 60 148

The R-factor results for the double peak deconvolutions
are shown in Figures 10, 11 and 12. This shows the
R-factor versus the peak separation for various values of
6_. The results to the left of the vertical line on each
Figure are those for which the two peaks are not resolved.

Again it becomes clear that there is a broad agreement of
the region where separation will occur and the R-factors
exhibit predictable, systematic variations which should be
useful in indicating the likely results to be obtained
when deconvoluting true experimental data.

3. NON GAUSSIAN RESOLUTION FUNCTIONS

In all the preceding experiments the resolution function
has been Gaussian.

Figures 13~17 (A-D) show sample plots of results obtained
using single and double peak intrinsic Gaussian
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distributions, and Gamma or Cauchy resolution functions.
In Figures 13-17, A 1is the observed data, B is the
resulting deconvolution, C is the resolution function and
D is the intrinsic spectrum.

po. fedt 3P o, rem, Eoadenin
13 1 - 3.0 17.0 Garma
14 1 - 6.0 11.0 Gamma
15 1 - 5.0 14.0 Cauchy
16 2 6.0 3.0 11.0 Garma
17 2 10.0 8.0 11.0 Gamma

In all five cases, the total count was 60,000 (for the
intrinsic spectra). For the single peak plots, a
background count of 33% of the total count was included.
The double peak plots had no background.

The results from the double peak deconvolution (Figures
16, 17) are quite remarkable, showing the separation of
identifiable peaks even when the width of the resolution
function is comparable with the peak separation. This
success may be due to the absence of background.

4. EFFECTS OF UNCERTAINTY IN THE KNOWLEDGE OF L.

When experimental spectra have to be deconvoluted (as
opposed to computer simulated spectra) there may be some
uncertainty in the knowledge of o_, since this cannot in
many cases be directly meaSured. We therefore
investigated the effect of this uncertainty by
deconvoluting the observed spectra with a range of
different broadening functions.

The results of these trials are given in Tables 1, 2 and
3. It will be seen that, as expected, an underestimate of
the broadening function causes no serious problem and a
solution (xz < 1) is found. If the broadening function is
overestimated by more than -~ 10% no solution is found.
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TABLE 1

Intrinsic ! Gaussian

FWHMHi : 9.4

Resolution : Gamma

FWHMHr : 11.0

Background : 0.0

§£§§§§§igg 12 Iterations Solution
15.0 708 600 X
14.0 402 600 X
13.0 230 700 X
12.0 <1 900 v
11.0% o<1 500 ¥
10.0 <1 500 \

9.0 <1 400 \
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TABLE 2

Intrinsic : Gaussian

FWHMHi : 5.9

Resolution : Gamma

FWH.MR : 11.0

Background : 0.33

25%%%53122 12 Iterations Solution

15.0 8.4 20,000 X
14.0 4.3 20,000 X
13.0 <1 1,800 ¥
12.0 <1 1,000 v
11.0* <1 700 v
10.0 <1 600 v
9.0 <1 400 \J
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TABLE 3
Intrinsgic Gaussian Doublet
FWHMHi 7.1
Separation 10.0
Resolution Gamma
FWHM, 11.0
Background 0.0
EE%%%%%EES 12 Iterations Solution
14.0 5.2 20,000 X
13.0 1.6 20,000 X
12.0 <1 1,700 ¥
11.0 <1 1,300 v
10.0 <1 1,000 |
9.0 <1 800 \J
.0 <1 800 \
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5. TEST ON EXPERTMENTAL DATA

So far all the results discussed in this paper have been
for computer simulated spectra. As a test of the method
the algorithm was applied to data recorded on the IRIS
spectrometer at the ISIS facility. The raw data is shown
in Piogura 18 and wae Ah+ainad fram A aamnla AfF Aamadherl
All «LJ-\’UJ-U LY ALIA WQW WVNLQALISAW L il a cwuy.&c N ode XA LALY 4
pyridine. If the CHy group in this molecule were a free
b ha avya rd e ermal A oot ok mvarela T3demam
LuLaLuvl Liic opeLLL Wil wOuLu CULISL1OUL U.L a SLilyde Lile,
broadened by the instrumental resolution.

In fact three peaks are easily seen and the deconvolution
of the observed data (Figure 18) by a Gaussian Droauenlng
function (ob = 0.0064 meV) suggests that a fourth peak is
in fact present as a shoulder to the central peak. This
s agreement with the presence of four molecules in the

~e 1

i
unit cell.

6. CONCLUSION

In this paper we have explored some of the issues that
will have to be resolved if the MaxEnt method is to become
a standard data analysis tool. The central problem hinges
on the confidence levels to be assigned to the result,
either when the broadening function is known precisely or
when there may be some systematic error in its assumed
value.

Since these confidence 1limits cannot be determined
analytically the only method at present available is the
empirical one. If one 1is deconvoluting a particular
experimental spectrum the result can be wused as the
starting point of a series of computer experiments to
determine the stability of the solution to a number of
random or systematic errors.
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